
Computer Networks 46 (2004) 273–293

www.elsevier.com/locate/comnet
OSPF-based hybrid approach for scalable dissemination
of QoS parameters q

Turgay Korkmaz a,*, Marwan Krunz b, Jyothi Guntaka a

a Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
b Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA

Received 23 June 2003; received in revised form 29 February 2004; accepted 3 March 2004

Available online 26 May 2004

Responsible Editor: S. Fdida
Abstract

Current link-state routing protocols (e.g., OSPF) use flooding to disseminate link-state information throughout the

network. Despite its simplicity and reliability, flooding incurs unnecessary communication and processing overheads in

control plane since nodes may receive multiple copies of the same advertisement. These overheads become significant in

protocols that support quality-of-service (QoS) routing, where links are associated with dynamic metrics (e.g., available

bandwidth) that need to be advertised frequently. The overheads can be significantly reduced using tree-based

broadcasting approaches. Although a number of such approaches have been proposed in the literature, they have not

been used in real networks because of their complexity and/or unreliability. In this paper, we propose a hybrid link-state

dissemination approach that combines the best features of flooding and tree-based broadcasting. Our approach is

particularly suited for the dissemination of ‘‘dynamic’’ link metrics (e.g., available bandwidth), which are often used in

QoS-based path selection and traffic engineering. In our approach, topological changes and first-time LSAs (link-state

advertisements) are flooded, whereas refresh LSAs (the ones that provide updated information on the dynamic metrics)

are sent using tree-based broadcasting. The broadcast trees in our approach are constructed dynamically during the

flooding of the first-time LSA, without the need for the complex algorithms of previously proposed tree-based ap-

proaches. Two versions of the proposed scheme are provided; one being more suitable for quasi-static topologies (i.e.,

link failure rate is low) while the other is aimed at highly dynamic networks. We show how both versions can be

integrated into the OSPF protocol. We further provide a working implementation of both versions, obtained after

modifying Moy’s OSPF source code [OSPF: Complete Implementation (with CD-ROM), Addison Wesley, Reading,

MA, 2000]. We contrast the communications and processing overheads of our scheme with those of flooding and pure

tree-based broadcasting, using both analysis and simulations. Our results indicate that the hybrid approach has a

significantly lower overhead than flooding; yet it enjoys the simplicity, reliability, and fast convergence of flooding.

� 2004 Elsevier B.V. All rights reserved.
qThe work of M. Krunz was supported in part by the National Science Foundation through grants ANI-0095626, ANI-0313234,

and ANI-0325979; and in part by the Center for Low Power Electronics (CLPE) at the University of Arizona. CLPE is supported by

NSF (grant # EEC-9523338), the State of Arizona, and a consortium of industrial partners. An abridged version of this paper was

presented at the IEEE GLOBECOM 2002––High Speed Networks Symposium, Taipei, Taiwan, November 17–21, 2002.
* Corresponding author. Tel.: +1-210-458-7346.

E-mail addresses: korkmaz@cs.utsa.edu (T. Korkmaz), krunz@ece.arizona.edu (M. Krunz), jguntaka@cs.utsa.edu (J. Guntaka).

1389-1286/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2004.03.034

mail to: korkmaz@cs.utsa.edu

274 T. Korkmaz et al. / Computer Networks 46 (2004) 273–293
Keywords: Flooding; Tree-based broadcasting; OSPF; Link-state routing; Scalable QoS routing
1. Introduction

In link-state routing, nodes in a routing domain
try to maintain an accurate ‘‘map’’ of the under-

lying network. To achieve this goal, each node

encodes the state information related to its out-

going links into a link-state advertisement (LSA)

packet and disseminates this LSA throughout the

network. To disseminate LSAs in a simple and

reliable manner, existing link-state routing proto-

cols (e.g., OSPF [18,19]) use flooding, in which an
incoming LSA is forwarded to all neighbors except

the one from which the LSA was received. As a

result, a given node may receive the same LSA

several times, causing unnecessary communica-

tions and processing overhead.

One can argue that the overhead of flooding

which is in control plane is small when compared

to data traffic. However, this is primarily the case
for static link metrics that are advertised rather

infrequently. Even in that case, routing protocols

(e.g., OSPF) try to minimize the overhead of

flooding by advertising small-size LSAs every 30

min. This infrequent dissemination is sufficient for

a best-effort service, but not for QoS-oriented

network services, in which multiple link metrics

(e.g., available bandwidth, link delay, jitter, etc.)
need to be disseminated. With more parameters

being advertised, the size of the LSA inevitably

gets larger. Moreover, some of these parameters

(e.g., available bandwidth) are quite dynamic, and

thus must be frequently disseminated (e.g., using

triggered updates [1]) to provide an accurate rep-

resentation of the underlying network. As we start

to incorporate dynamic metrics (such as the
available link bandwidth) into the routing archi-

tecture, the amount of control overhead will in-

crease by orders of magnitude, depending on the

dynamic nature of the link-state parameters. For

example an egress link that carries few connec-

tions, a change in the bandwidth of any of these

connections (including the case of connection ter-

mination) can, in principle, trigger a new band-
width advertisement. These changes can occur at

the time scale of seconds, not minutes, creating a

large number of update messages per time unit.
While QoS routing architectures are yet to be de-

ployed and more insight into and understanding of

their impact on the operation of the network are

still needed, it is our belief that such architectures

will generate large control-traffic volume. Note

that the large volume of control traffic not only

impacts the bandwidth usage, but also the effi-

ciency of packet switching at the router and delay
variation for data packets. Because the router

gives higher switching priority to control packets,

the arrival of a new control packet triggers an

interrupt and forces the processor at the router to

switch from one task to another, which degrades

the performance of the router and increase the

delay for data packets. Therefore, schemes that

reduce the anticipated control-traffic volume will
have a great impact on the success of link-state

routing protocols.

To reduce the overhead of flooding in link-state

protocols, researchers have investigated tree-based

broadcasting approaches [4,14], in which LSAs are

forwarded over broadcast trees such that every

node receives exactly one copy of each LSA. While

tree-based broadcasting reduces the overhead, it
introduces a challenging problem, namely how to

determine and maintain consistent broadcast trees

throughout the network. Previously proposed

solutions for this problem rely on complex algo-

rithms and protocols (see Section 2 for details),

making them impractical to deploy in real net-

works.

In this paper, we propose a hybrid mechanism
that combines the best features of flooding and

tree-based broadcasting. The proposed mechanism

alternates between flooding and tree-based

broadcasting modes. In the flooding mode, ‘‘first-

time’’ LSAs are flooded to establish the broadcast

trees, over which subsequent (refresh) LSAs are

advertised in the tree-based broadcasting mode.

The proposed hybrid mechanism can, in principle,

 Link ID

 Link Data

cost metric Link Type # TOS = q
number of QoS parameters

0

0

 TOS (QoS 2)

 TOS (QoS 1)

 TOS (QoS q)

 TOS metric (QoS value)

 TOS metric (QoS value)

 TOS metric (QoS value)

0

...

 Link ID

 Link Data

cost metric Link Type # TOS = q
number of QoS parameters

 TOS (QoS 1) TOS metric (QoS value)0

LS Age Options 1

Advertising Router

LS sequence number

Link State ID

Router Type

32 bits

H
ea

de
r

(2
0

by
te

s)

LS checksum

0

length

 number of advertised links l=2

L
in

k
2

L
in

k
1

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293 275
be used with any link-state routing protocol. For

concreteness, we focus on the current OSPF pro-

tocol and its QoS extensions as described in [2]. 1

In general, the proposed approach requires three

modifications to OSPF: (1) redefining some of the

currently unused bits in the LSA header, (2) add-
ing a table in each router for maintaining infor-

mation relevant to the broadcast trees, and (3)

adding and/or modifying some of the steps in the

‘‘flooding procedure’’ of OSPF. We implemented

and tested these modifications using the source

code and simulation environment provided by

Moy [20]. The hybrid mechanism is shown to

achieve a significant reduction in the communica-
tions overhead compared to flooding; yet, it

maintains the simplicity and reliability of flooding.

Compared to pure tree-based broadcasting, the

proposed mechanism incurs a slight extra over-

head, but this overhead is overshadowed by the

simplicity of this mechanism and its amenability to

practical application in real networks. Further-

more, in contrast to previous tree-based broad-
casting mechanisms, in which the broadcast trees

are determined based on the hop count, ours uses

the minimum delay experienced during the flood-

ing of a first-time LSA to compute the broadcast

trees. As a result, it enjoys the same fast conver-

gence of flooding.

The rest of this paper is organized as follows. In

Section 2, we give background information on
flooding in OSPF and review the literature on tree-

based broadcasting. In Section 3 we present the

basic version of the proposed hybrid mechanism,

describe how to integrate it into the OSPF proto-

col, analyze its overhead, and contrast this over-

head with those of flooding and pure tree-based

broadcasting using both analysis and simulations.

In Section 4 we present a variant of the hybrid
mechanism that is suited for dynamic topologies

with a high rate of link failures. Extending the

hybrid mechanism to hierarchical OSPF networks

is described in Section 5. The paper is concluded in

Section 6. In the Appendix A, we give highlights of
1 The Opaque LSA Option [8] is another proposal to provide

QoS extensions in OSPF. Since it also relies on flooding, it can

be easily integrated into our hybrid approach.
our software implementation of the hybrid

scheme, performed by modifying Moy’s OSPF

source code. A complete description of this

implementation is available online at www.cs.utsa.

edu/~korkmaz/research/hftb.
2. Background and related work

2.1. Flooding

Flooding is used in OSPF to disseminate the

link-state information to all routers in the same

domain. Each router periodically generates LSAs
representing the parameters of its outgoing links

and sends these LSAs to all of its neighbors.

Routers forward received LSAs to their neighbors

except the ones that sent the LSAs. Typically,

received LSAs are explicitly acknowledged, al-

though in some cases the acknowledgement

(ACK) is implicit (for example, if two neighbors

send the same LSA to each other at around the
0

0

 TOS (QoS 2)

 TOS (QoS q)

 TOS metric (QoS value)

 TOS metric (QoS value)

...

Fig. 1. Structure of an OSPF router-LSA with two advertised

links.

http://www.cs.utsa.edu/~korkmaz/research/hftb
http://www.cs.utsa.edu/~korkmaz/research/hftb

276 T. Korkmaz et al. / Computer Networks 46 (2004) 273–293
same time, then each of them can be sure that the

other has the LSA, so there is no need to gen-

erate explicit ACKs). This flooding process allows

every node to acquire the same map of the net-

work.

OSPF uses five types of LSAs. For a network
with point-to-point links, only one of these types,

known as router-LSA, is used. The basic structure

of a router-LSA is shown in Fig. 1. Every router-

LSA starts with a 20-byte header that contains

information that uniquely identifies the LSA. The

rest of the LSA contains the values of the ‘‘cost’’

metric and any additional QoS parameters that are

associated with the outgoing links of the LSA’s
originator. Note that OSPF currently uses a single

metric, but the type-of-service (TOS) field in

OSPF, which has not been much used in the past,

can be redefined to advertise multiple link

parameters (see [2] for details). Consider the sha-

ded fields in Fig. 1. In this example, the number of

advertised links is indicated by l. The link-state
information is then repeated l times with different
values. Each link has some identification infor-

mation followed by the link parameters. The

number of link parameters is indicated by q. Each
parameter is encoded using a four-byte field that

includes the parameter name and its value. Hence,

the size (in bytes) of a router-LSA originating from

node u is given by SðuÞ¼def20þ 4þ lðuÞð12þ 4qÞ,
where lðuÞ is the number of advertised outgoing
links from node u (i.e., lðuÞ ¼ degðuÞ). Note that
an LSA ACK packet consists of only a 20-byte

header.

Flooding has also been used for path determi-

nation in mobile ad hoc networks (MANETs), and

reducing its overhead has been the focus of much

research. In MANETs, the routing protocol

may be proactive (table driven) or reactive (on-
demand). 2 Examples of proactive protocols are

DSDV [25], WRP [21], and CGSR [7]. In proactive

protocols, nodes periodically broadcast their link

(or path) costs and use Dijkstra (or Bellman–Ford)

like algorithms to compute the ‘‘shortest’’ paths to

various destinations. These protocols are some-
2 A combination of reactive and proactive approaches can

also be used, as in the zone routing protocol (ZRP) [13].
what similar to link-state and distance-vector

protocols used over the wired Internet (e.g., OSPF

and BGP). Reactive protocols, on the other hand,

operate on demand; when the source node does not

have in its cache a path to a given destination, it

broadcasts a route request (RREQ) packet, que-
rying its neighbors about the availability of such a

path. Dynamic source routing (DSR) [15], ad-hoc

on-demand distance vector (AODV) [24], and the

temporally ordered routing algorithm (TORA)

[23] are all examples of reactive routing protocols.

In their basic forms, reactive protocols rely on

flooding for path discovery, whereby the source

node floods the network with its RREQ packet.
When an intermediate node receives the RREQ

packet, it responds back with a route reply

(RREP) if it has a path to the destination.

Otherwise, the intermediate node continues to

flood the packet. Eventually, at least one node

(possibly the destination itself) will respond affir-

matively with a RREP. The overhead of flooding

via wireless broadcast is even more significant than
flooding over point-to-point links, and it can lead

to a ‘‘broadcast storm problem’’ [22] (neighboring

nodes that receive an RREQ packet rebroadcast it

simultaneously, leading to collisions, backoffs, re-

transmissions, etc.). Several attempts were made to

reduce the overhead of flooding in reactive routing

protocols (e.g., [6,16]). For example, Ko and Va-

idya [16] proposed the location aided routing

(LAR) scheme, in which the Global Positioning

System (GPS) is used to localize path queries and

limit their propagation. A similar objective is

achieved in [6] but without the need for GPS-based

location information. Note that such techniques

are aimed at on-demand routing approaches, and

are not applicable to table-driven proactive pro-

tocols like OSPF.
The overhead of flooding has also been

addressed in the context of establishing multicast

trees (e.g., [5]). In [5] the authors use consecutive

flooding of a multicast request (a technique known

as expanding rings) to establish a multicast tree for

a given set of receivers. This is somewhat similar to

flooding a packet with a limited time-to-live (TTL)

value, where the TTL value in incrementally in-
creased until all receivers are included in the

multicast tree.

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293 277
2.2. Tree-based broadcasting

State dissemination based on tree-based

broadcasting appears in the literature in two

forms: single broadcast tree (SBT) and multiple
broadcast trees (MBT). In the SBT approach, all

nodes compute a common broadcast tree (e.g., a

spanning-tree), and every node marks its own links

on that tree. Every node then receives LSAs via

one of its marked links and forwards the LSAs

through its other marked links. The SBT approach

has two main disadvantages. First, it results in an

unbalanced load distribution since LSAs are sent
over a fixed subset of the network links (i.e., the

links that belong to the broadcast tree). Second, it

is quite possible for nodes that are neighbors

according to the network graph to lie far away

from each other on the broadcast tree, a situation

that delays the convergence of the routing proto-

col. In [3] the authors explored the viability of the

SBT approach for state dissemination in the PNNI
protocol. They provided a distributed spanning-

tree algorithm for determining the broadcast tree.

However, finding this tree and maintaining it in a

consistent manner involves complex operations

such as exchanging extra control packets besides

LSAs and executing the spanning-tree algorithm in

a distributed manner.

In the MBT approach, every node has its own
broadcast tree (e.g., a shortest path tree). For

illustration, consider the trees originating from

nodes 1 and 3 in Fig. 2. The LSAs originating from

a given node are disseminated over that node’s

broadcast tree. For example, node 1 generates an

LSA and sends it to nodes 2 and 3. However, only

node 2 forwards this LSA to node 4 (according to

the broadcast tree of node 1). To disseminate
LSAs over their originators’ broadcast trees, every

node needs to know the broadcast trees of all other

nodes. This can be done as follows. Every node
41

2

3

(a)

41

2

3

(b)

Fig. 2. Multiple broadcast trees originating from nodes 1 and 3.
determines its parent and children on every

broadcast tree and stores these parent–children

relationships in a table [14]. Fig. 3 illustrates an

example. Let Ti be the broadcast tree originating
from node i, i ¼ 1; 2; . . . ; n, where n is the number
of nodes in the network. Consider the representa-
tion of T1 at node 2. Since node 2 has only one
child on T1 (namely, node 4), it marks node 4 as its
child in the first row of its table. So whenever node

2 receives an LSA originating from node 1, it

forwards this LSA to node 4 only. Node 2 also

stores its parent on T1 (namely, node 1) in the first
row of its table. Since LSAs are disseminated over

different shortest-path trees, the MBT approach
provides some form of load balancing. The con-

vergence time of this approach is also faster than

that of the SBT approach.

A key issue in the MBT approach is how to

determine the broadcast trees in a distributed

manner. Previously proposed approaches achieve

that through additional control packets (besides

the LSAs) and by relying on protocols that execute
some variant of the shortest path algorithm [4,14].

This complicates the establishment and mainte-

nance of consistent broadcast trees. The main

objective of these complicated mechanisms is to

always disseminate LSAs over the broadcast trees.

In [14] the authors addressed the issue of deter-

mining broadcast trees while the topology infor-

mation is still being disseminated over these trees.
In [4] the authors considered the idea behind re-

verse-path forwarding (RPF) in [11] and proposed

a new topology dissemination protocol called

TBRPF, in which broadcast trees are computed

based on full topological information received

over the broadcast trees themselves. In TBRPF,

every node executes Dijkstra’s algorithm to

determine a reverse minimum-hop tree, and then
exchanges some information with neighbors to

determine its parent and children from the stand-

points of other nodes. Although TBRPF provides

more reliability than other existing methods, it

suffers from the overhead associated with com-

puting the trees and communicating with neigh-

bors whenever a topological change occurs. The

ideas behind SBT and MBT have also been used in
various multicast protocols (e.g., CBT, DVMPR,

PIM [12,17,26]). Specifically, SBT is similar to the

3
4

2
1

2

1 3 4
1

children

3

childrenchildren ar
en

t

pa
re

nt

ar
en

t

yn n

n n n
n n n

y yy

4

T1
T2
T3
T4

n : no
y : yes

L
SA

 o
ri

gi
n

–

278 T. Korkmaz et al. / Computer Networks 46 (2004) 273–293
shared multicast trees while MBT is similar to

source-based multicast trees. In general, multicast

protocols are being designed to optimize the per-

formance for a subset of nodes (receiving nodes).

In our case, however, we try to provide better

performance in broadcasting sender’s packets to
all nodes in the network.
1
2
3
4

1

4

2
3

1

3
4

2
41

3

1 2 4
1

2 3
2

2 3

33

children

p p

pa
re

nt

y y y

y y n n
n n
n nn n

n n

n n

n n n
n n n

y y –

2

3

n 4

2

2

y n

L
SA

 o
ri

gi
n

L
SA

 o
ri

gi
n

L
SA

 o
ri

gi
n

–

–

Fig. 3. Representing the parent–children relationships of the

broadcast trees in the MBT approach.

v

j

iu

Fig. 4. Establishing broadcast trees in the HFTB approach.
3. Hybrid dissemination mechanism

In this section, we first introduce our Hybrid

Flooding and Tree-based Broadcasting (HFTB)

approach and prove its correctness. We then dis-
cuss how it can be integrated into OSPF. Finally,

we compare the overhead of HFTB with that of

flooding and pure tree-based broadcasting using

analytical and simulation results. For now, we

assume that the underlying network consists of a

single area (i.e., domain) and that no link failures

take place within the standard OSPF update

interval (30 min). In later sections, we modify
HFTB to deal with topologies that exhibit fre-

quent link failures and we also address its exten-

sion to hierarchical OSPF-based networks.

3.1. HFTB and its correctness

As indicated before, the 30 min update interval

of OSPF [18] is sufficient for the relatively static
cost metric, but it is not enough for other link

parameters (e.g., available bandwidth) that may

change several times within the 30 min period.

Such dynamic parameters need to be frequently

disseminated, e.g., using triggered updates. The

objective of HFTB is to disseminate triggered

LSAs using tree-based broadcasting while con-

tinue to use flooding for disseminating the rela-
tively static cost metric and connectivity

information every 30 min.

Basically, HFTB is similar to previous MBT

approaches in the sense that every node maintains

the same parent–children relationships, as shown

in Fig. 3. However, in contrast to previous MBT

approaches, HFTB uses flooding of the first LSA

in every 30 min update interval to establish the
broadcast trees, which are then used to dissemi-

nate subsequent ‘‘refresh’’ LSAs generated within
the update interval. No extra control packets or

complex protocols are needed to establish the
broadcast trees.

The broadcast trees are established as follows.

Let LSAu denote a flooded LSA that was gener-

ated by some node u. Suppose that LSAu arrives at

some node i for the first time through node j, as
shown in Fig. 4. Node i selects node j as its parent
from the standpoint of node u and acknowledges
node j. When node j receives the acknowledgment,
it records node i as its child from the standpoint of
node u. If LSAu arrives at node i again via another
node v, then node i acknowledges the LSA as in
OSPF without establishing a new parent–child

relationship. After the flooding of the first LSAu,

every node can determine its parent and children

on the broadcast tree of node uðTuÞ. In contrast to
previous approaches that establish the broadcast
trees with respect to (w.r.t.) the minimum hop

count, HFTB dynamically determines the broad-

cast trees w.r.t. the actual minimum delay, and

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293 279
broadcasts LSAs over these trees, suggesting that

HFTB converges as fast as flooding.

One concern here could be whether the ini-

tially established optimal broadcast trees will

stay optimal for the next 30 min. It is true that

the initially optimal trees might not stay opti-
mal for the next 30 min due to delay variations

in the network. However, the delay variation on

trees can be reduced by giving priority to OSPF

packets. In fact, existing routers (e.g., Cisco

IOS) assign an IP precedence value of 6 (i.e.,

Internetwork Control) to OSPF and other con-

trol packets on the control plane, and process

them before queued data packets (see http://
www.cisco.com/warp/public/105/rtgupdates.html

for details). Giving priority to OSPF and other

control packets means that these packets will

not see the high delay variations seen on the

data paths. Therefore, from the point of view of

the refresh LSAs, the ‘‘optimal’’ path obtained

based on first-time (flooded) LSAs will likely be

stable (i.e., its delay does not change signifi-
cantly) over a 30 min period.

Theorem 1 (Correctness of HFTB). Consider a
network G ¼ ðV ;EÞ with bidirectional links. Sup-
pose that an arbitrary node s 2 V generates an LSA
and floods it throughout the network. Furthermore,
suppose that the LSA experiences some delay dðu; vÞ
while being processed and forwarded from node u to
node v. Under HFTB, Ts is established throughout
the network in finite time (i.e., every node can
determine its parent and children on Ts). Moreover,
Ts converges to a shortest-paths tree.

Proof. Initially, Ts consists of only node s. So, the
theorem is trivially true. Consider Ts after flooding
LSAs through some nodes in the network. In
flooding, an arbitrary node u may receive the same
LSAs several times. However, node u forwards the
incoming LSAs to its neighbors only once, upon

the first arrival of this LSA. In addition, node u
selects its parent on Ts by acknowledging the node
from which LSAs was received for the first time.

Subsequent arrivals of LSAs at node u are
acknowledged without establishing a parent–child
relationship. Let t½u� be the time at which node u
receives LSAs for the first time along the path
p ¼ hv0 ¼ s; v1; . . . ; vk ¼ ui. Without loss of gener-
ality, we assume that t½s� ¼ 0. So, t½u� ¼Pk

i¼1 dðvi
1; viÞ.
To prove that Ts is a shortest-paths tree, we

need to show that the path p does not contain any
cycle and that p is the shortest path from s to u.
The proof follows similar arguments to those used

in [10, pp. 523–525] for shortest-paths trees.

However, instead of the process of relaxing a link

ðu; vÞ in [10], we consider the process of forwarding
first-time LSAs from node u to node v. So it is
sufficient to show that forwarding LSAs from node

u to node v upon its first arrival is the same as
relaxing the link ðu; vÞ in the computation of a
shortest-paths tree.

In computing the shortest-paths tree, a node u
with minimum t½u� is selected and every link ðu; vÞ
is considered for relaxation in a sequential manner.

If t½u� þ dðu; vÞ < t½v�, then link ðu; vÞ is relaxed,
i.e., the parent of node v is set to node u and t½v� is
set to t½u� þ dðu; vÞ. In HFTB, paths are explored
in parallel. So node u starts forwarding LSAs

through ðu; vÞ as soon as it receives LSAs for the

first time. In other words, a node u with minimum
t½u� is automatically selected in parallel and every
link ðu; vÞ is considered. If node v receives LSAs for

the first time via node u, then the parent of node v
is set to node u and t½v� is set to t½u� þ dðu; vÞ; this is
the same as relaxing ðu; vÞ in [10]. Otherwise, no
parent–children relationship is established again.

The rest of the proof follows the same proofs in

[10, pp. 523–525].

Finally, forming the broadcast tree Ts takes fi-
nite time since in flooding every node receives

LSAs in a finite amount of time. h

3.2. Integrating HFTB into OSPF

OSPF can be easily modified to support the

proposed approach, as outlined in Fig. 5. In gen-

eral, we make three modifications to OSPF. The

first one is to designate one of the unused bits of

the Options field in the LSA header as Flooding or

Tree-based broadcasting (FT)-bit. If the FT-bit is

set to 0, the LSA will be flooded throughout the
network as in the standard OSPF and will be used

to establish the broadcast tree of that LSA. If this

bit is set to 1, then the LSA will be disseminated

http://www.cisco.com/warp/public/105/rtgupdates.html
http://www.cisco.com/warp/public/105/rtgupdates.html

Fig. 5. Integrating HFTB into the OSPF protocol.

280 T. Korkmaz et al. / Computer Networks 46 (2004) 273–293
over its originator’s broadcast tree. The FT-bit is

also used in LSA ACKs. In this case, if the FT-bit
is 1, then this is an indication that the receiver has

selected the sender as its parent; otherwise, the

receiver has a different parent. When a sender node

receives an ACK with FT-bit¼ 1, this sender re-
cords the receiver as its child. To maintain these

parent–children relationships, we need to create a

table at each node, which is the second required

modification. The third modification is to add/
change some steps in the flooding procedure of
OSPF (as listed in Fig. 5), so that the broadcast

trees can be established during the flooding of the
first LSAs and used during the tree-based dis-

semination of the subsequent LSAs generated

within the 30 min interval.

We implemented HFTB, starting with the

OSPF’s source code provided in [20] and modify-

ing this code to account for the above required

changes. The implementation was tested on a

‘‘real’’ network of four Linux-based PCs acting as
OSPF nodes. It was also tested using the simula-

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293 281
tion tool provided in [20]. The details of our

modifications and implementations are summa-

rized in Appendix A and described in detail in a

technical report that is available online at

www.cs.utsa.edu/~korkmaz/research/hftb.

3.3. Performance comparisons

To compare the overheads of various dissemi-

nation mechanisms, we consider two performance

measures: (1) the total number of LSAs and ACKs

(TNLA), which gives an indication of the pro-

cessing overhead, and (2) the total size (in bytes) of

the exchanged LSAs and ACKs (TSLA), which
gives an indication of the communications over-

head. These measures can be determined analyti-

cally under some ideal link conditions, namely, no

LSA losses, no retransmissions, and no implicit

ACKs. We first present such results for flooding,

HFTB, and pure tree-based broadcasting. We then

compare these results with the ones obtained via

simulations, using the tool provided in [20]. Note
that our analytical results are intended to provide

lower bounds on the TNLA and the TSLA. We

simply use the analytical results (the lower bounds

on the TNLA and the TSLA) to illustrate the

impacts of different system parameters on the

performance of the existing and proposed solu-

tions, and compare the general performance trends

in these solutions. In other words, our analytical
results are not intended to replace the simulation

results, which take into account the dynamic

behavior of the system at hand. In our emulations/

simulations, we relax the simplifying assumptions

made for analytical results and measure the TNLA

and TSLA of the exiting and proposed schemes

under the actual operation of OPSF.

3.3.1. Analytical results

Consider a network with n nodes and m links.
Each node u periodically (every 30 min) generates
a router-LSA and floods it as in the standard

OSPF. Within the 30 min period, each node may

be triggered to generate additional router-LSAs

that advertise the most recent values of the link-

state parameters. Let k indicate the average num-
ber of triggered advertisements within a 30 min

interval. Recall that the size of an ACK packet
is 20 bytes while the size of an LSA packet

originating from node u is SðuÞ ¼ 20þ 4þ
lðuÞð12þ 4qÞ bytes, where lðuÞ is the number of
advertised links (i.e., the degree of node u) and q is
the number of parameters associated with every

link. If no link failure occurs in a given 30 min
interval, the TNLA and TSLA of flooding are

TNLAflooding ¼ 2ðk þ 1Þnm; ð1Þ

TSLAflooding ¼ ðk þ 1Þ
Xn

u¼1
m½SðuÞ þ 20�: ð2Þ

In the above equations, we assume that every LSA

is explicitly acknowledged. So when two neigh-
boring nodes, say u and v, receive the same LSA
from a third node, one of them, say u, forwards it
first to the other, which in turn acknowledges the

LSA. As a result, the total number of forwarded

LSAs in the network will be the same as the total

number of ACKs (i.e., half of the analytically

computed TNLA are LSAs). In a real network,

however, u and v may forward the same LSA to
each other around the same time. In this case, each

of them can be sure that the other has the LSA,

and there is no need to generate an explicit ACK.

Compared to the scenario assumed in the analysis,

there is one additional generated LSA but one less

ACK, which means that the actual TNLA value is

roughly equal to the analytically computed one

(the latter is slightly smaller because the analysis
ignores retransmissions of LSAs). As for the

TSLA measure, its actual value will be much larger

than the analytically predicted one, because there

are more LSAs than ACKs in the actual TNLA

value.

In pure tree-based broadcasting, LSAs are dis-

seminated over trees, each consisting of n
 1
links. Thus, the TNLA and TSLA of tree-based
broadcasting are

TNLAtree ¼ 2ðk þ 1Þnðn
 1Þ; ð3Þ

TSLAtree ¼ ðk þ 1Þ
Xn

u¼1
ðn
 1Þ½SðuÞ þ 20�: ð4Þ

Note that establishing the broadcast trees also

involves some protocol overhead, which we are

ignoring since our focus is on the TNLA and

http://www.cs.utsa.edu/~korkmaz/research/hftb

282 T. Korkmaz et al. / Computer Networks 46 (2004) 273–293
TSLA during the state dissemination phase. Also

note that there are no implicit ACKs in pure tree-

based broadcasting.

For HFTB, no extra protocol overhead is in-

curred due to the establishment of broadcast trees
during the flooding of the first LSA. The TNLA

and TSLA of HFTB are

TNLAHFTB ¼ 2ðnmþ knðn
 1ÞÞ; ð5Þ

TSLAHFTB ¼
Xn

u¼1
m½SðuÞ þ 20�

þ k
Xn

u¼1
ðn
 1Þ:½SðuÞ þ 20�: ð6Þ

In practice, some first-time LSAs will be implicitly

acknowledged during the flooding phase (but not

during the tree-based broadcasting phase). So the

relative improvement of HFTB over flooding will

be more pronounced in practice than what is being

predicted by the above equations (as shown later

in simulations).

The TNLA depends on three parameters
ðn;m; kÞ while the TSLA depends on four param-
eters ðn;m; q; kÞ. In the numerical examples below,
we consider topologies with n ¼ 100, and we vary
m, q, and k. The same trends have been observed
for other values of n. Fig. 6 depicts the TNLA of
various dissemination mechanisms versus m and k.
As m and k increase, the TNLA (and thus the
100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14
x 105

T
N

L
A

 w
ith

in
 3

0-
m

in
ut

e
in

te
rv

al

m

n=100, q=4, and λ=6

Flooding
HFTB
Tree-based Broadcasting

Fig. 6. TNLA (processing overhead) ve
processing overhead) of compared schemes in-

creases linearly. However, the TNLA of flooding

increases at a higher rate than the other two

schemes. Fig. 7 depicts the TSLA of various dis-

semination mechanisms versus m, q, and k. As m
increases, the TSLA (and thus the communica-
tions overhead) of flooding increases quadrati-

cally, while this increase is linear in other

mechanisms. As shown in the figure, the TSLA of

all mechanisms increases linearly with q. However,
the TSLA of flooding increases at a higher rate

than those of tree-based mechanisms. The TSLA

of all mechanisms is linearly proportional to k.
Once again, the TSLA of flooding increases at a
much higher rate than that of other mechanisms.

In general, pure tree-based broadcasting is ex-

pected to provide the best possible efficiency in

state dissemination, given that the broadcast trees

are already established. However, establishing such

trees in the pure tree-based approach requires

complex algorithms and protocols to maintain

consistent trees throughout the network. Because
of the complexities and/or unreliabilities of previ-

ous tree-based mechanisms, current Internet pro-

tocols do not use tree-based broadcasting, and

instead rely on flooding despite its high communi-

cations overhead. The proposed HFTBmechanism

takes advantage of both flooding and tree-based

broadcasting. HFTB is easy to incorporate into

the current link-state protocols and provides
2 4 6 8 10
0

1

2

3

4

5

6

7

8

9
x 105

T
N

L
A

 w
ith

in
 3

0-
m

in
ut

e
in

te
rv

al

λ

n=100, m=400, and q=4

Flooding
HFTB
Tree-based Broadcasting

rsus m and k (based on analysis).

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 10
8

T
SL

A
 w

ith
in

 3
0-

m
in

ut
e

in
te

rv
al

m

n=100, q=4, and λ=6

Flooding
HFTB
Tree-based Broadcasting

1 2 3 4 5
1

2

3

4

5

6

7

8

9 x 10
7

T
SL

A
 w

ith
in

 3
0-

m
in

ut
e

in
te

rv
al

q

n=100, m=400, and λ=6

Flooding
HFTB
Tree-based Broadcasting

2 4 6 8 10
0

2

4

6

8

10

12 x 10
7

T
SL

A
 w

ith
in

 3
0-

m
in

ut
e

in
te

rv
al

λ

n=100, m=400, and q=4

Flooding
HFTB
Tree-based Broadcasting

Fig. 7. TSLA (communications overhead) versus m, q, and k (based on analysis).

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293 283
significantly better performance than flooding. It is

particularly advantageous in networks that sup-

port QoS routing, where the values of q and k are
typically larger than those of best-effort networks.

3.3.2. Simulation results

We also compare the performance of our
implementation of HFTB against flooding using

the simulation tool ospfd_sim provided in [20].

This tool takes an entire OSPF network as a con-

figuration file and executes a copy of the actual

ospfd software for each router, allowing us to

test/evaluate actual implementations (and modifi-

cations) of the OSPF protocol as if we had real

OSPF routers. In our simulations, we use the
topologies shown in Fig. 8, which are modified

versions of the ANSNET topology [9]. The con-

figuration files for these topologies are available

online at www.cs.utsa.edu/~korkmaz/research/

hftb. Since the general trends in TNLA and TSLA

as functions of k and q are clear, we just select one
reasonable value for k and q. For example, we as-
1

2

3

4

5

6

7

9

13 14

16

17

15

12

10 18

19

20

11

8

26

31

32

30

28
29

25

27

24

22
23

21

3

4

Fig. 8. Modified 32-node ANSNET t
sume that each link is associated with three QoS

parameters (i.e., q ¼ 3) whose values are refreshed
five times within each 30 min period (i.e., k ¼ 5). A
smaller value would not show clearly the difference

between HFTB and flooding. On the other hand, a

larger value would require more simulation time

and resources, without necessarily depicting a dif-
ferent trend in the behavior. For each topology, the

simulation program was ran for three hours. The

obtained TNLA and TSLA values, normalized and

averaged over a 30 min interval, are shown in Fig.

9. The figure also shows the TNLA and TSLA

values computed using the previous formulas. For

the TNLA, the analysis and the simulations pro-

duce comparable results, with the difference
attributed to the random initialization of nodes in

the simulations and the enabling of LSA retrans-

mission. In the case of the TSLA, the difference

between the analysis and the simulations is signif-

icant, particularly for flooding. The cause of this

big gap is mainly attributed to the assumption used

in the analysis that all LSAs are sent in one
1

2

5

6

9

14

16

17

15

10 18

19

20

11

8

26

31

32

30

28
29

25

27

24 22

23
21

7

13

12

opologies with 54 and 91 links.

http://www.cs.utsa.edu/~korkmaz/research/hftb
http://www.cs.utsa.edu/~korkmaz/research/hftb

Fig. 9. TNLA and TSLA versus m for flooding and HFTB (based on analysis and simulation).

284 T. Korkmaz et al. / Computer Networks 46 (2004) 273–293
direction over a link and explicitly acknowledged in
the other direction. In the simulations, however,

several LSAs are sent in both directions over a link

and implicitly acknowledged, resulting in more

LSAs than ACKs. For example, in one simulation

run on the network with 54 links, we counted

14,994 LSAs and 6148 ACKs in the case of flood-

ing. Their total (21,142) is the TNLA value, which

is close to its analytically obtained counterpart
(20,736). In summary, the number of implicit

ACKs (and thus the number of LSAs) increases

during actual flooding, resulting in significantly

higher TSLA than what is analytically expected. In

case of HFTB, some implicit ACKs are used during

the flooding of the first-time LSAs. However, since

subsequent LSAs are disseminated over the

broadcast trees, implicit ACKs are no longer used,
resulting in only a slightly higher TSLA than what

is analytically expected. Accordingly, we should

expect that in practice, HFTB will provide a much

better performance gain over flooding than what is

analytically predicted.
4. Enhanced hybrid mechanism

The previously discussed HFTB mechanism

computes the broadcast trees once every 30 min.
However, due to topological changes, particularly
link failures, some broadcast trees may become

disconnected shortly after they have been updated.

If no action is taken to repair these trees, some

nodes may not receive the up-to-date values of link

parameters for at most 30 min. The basic HFTB is

still a viable solution if the probability of a link

failure is low or if the underlying path selection

algorithm is capable of dealing with inaccurate
state information. However, if highly accurate

state information is needed at every node, then the

disconnected trees should be repaired during the

tree-based broadcasting phase. This can be done

by using a slightly modified version of HFTB,

which we refer to as HFTB with repair tree option

(HFTB-RT).

In the absence of link failures, HFTB-RT is
similar to the basic HFTB. When a link fails,

HFTB-RT dynamically repairs the disconnected

broadcast tree(s) by switching the LSA of that tree

to the flooding mode at the disconnection point.

This is similar to the node at disconnection point

instantiating the LSA. As an example, consider the

situation in Fig. 4. Suppose that link ðj; iÞ has gone
down, disconnecting Tu. Upon detecting the link
failure, node j realizes that it has lost its child i
from the standpoint of node u while node i has lost
its parent. Now assume that node j receives an

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293 285
LSA from node u in tree-based broadcasting
mode. In this case, since node j knows that node i
and other successors will not receive LSAu from

any other nodes, it will flood LSAu throughout the

network to make sure every node gets the same

LSA. Although the LSA is flooded with the same
sequence number, we mark some bits in the header

to indicate that this LSA is more recent than the

previous ones so that the nodes that already have

it will not discard it. For example, as shown by the

dashed arrows in Fig. 10, node u receives LSAu

flooded back from j. However, node u does not

discard it, since the RT-bit that we describe later in

this LSA is set to 1. So node u updates its database
and further floods this LSA to other neighbors. At

some point during this flooding, node v receives
the LSA and forwards it to node i. Note that in
general it is possible that LSAu might reach node i
through a node other than node u or v. In any case,
the node from which node i receives the LSAu first

time is selected as the new parent of node i on Tu.
Accordingly, node i sends an ACK message to that
node (e.g., v), indicating the establishment of a
new parent–child relationship. When node v re-
ceives this ACK, it records node i as a child. Note
that the objective here is to repair the tree rather

than establishing it from scratch. So if a node re-

ceives the same LSA from its child, then this node

should not select its child as its parent. For

example, in Fig. 10, node u gets the LSA back
from node j, but does not select it as a parent. As a
result, the broadcast tree originating from node u
is repaired, as shown by the solid arrows in Fig. 10.

Also note that the same LSA is sent over some

links twice, increasing the TNLA and TSLA.

However, our simulations indicate that HFTB-RT

still gives much better performance than flooding.

Integrating HFTB-RT into OSPF can be done
as described in the pseudo-code in Fig. 11. In
u i

j

v

Fig. 10. Repairing broadcast trees in HFTB-RT.
addition to the OSPF modifications described in

Section 3.2, we need to make two other changes.

First, we need to designate a second unused bit in

the Options field of the LSA header as the Repair

Tree (RT) bit. Following a link failure, nodes at

both ends of the failed link generate new LSAs
with RT-bit¼ 1 and flood these LSAs throughout

the network. These LSAs will be used to repair the

broadcast trees. Suppose that some node i receives
LSAu with FT-bit¼ 0 and RT-bit¼ 1 via some
node v. Node i first checks whether it has a parent
on Tu. If not, it selects node v as its parent and
sends an ACK message with FT-bit¼ 1 and RT-
bit¼ 0 to node v. Upon receiving this ACK, node v
records node i as its child.
The second change is to add a new step in the

flooding procedure of OSPF, as follows. If the link

connecting node i to one of its children on the tree
of node u goes down, then node i should switch an
incoming LSA of node u from tree-based broad-
casting mode to flooding mode (i.e., change the

FT-bit and the RT-bit from 1 and 0 to 0 and 1,
respectively). Node i then floods that LSA to all
neighbors including its own parent. During this

flooding, those nodes that have lost their parents

due to the link failure can select a new parent,

repairing the disconnected trees. Again by modi-

fying the OSPF’s source code provided in [20], we

have implemented HFTB-RT and tested our

implementation using both a real network with
four OSPF nodes and also using the simulation

tool in [20].

When no link failures take place, HFTB-RT

and HFTB have the same TNLA and TSLA per-

formance. Under link failures, HFTB-RT uses the

flooding mode more often than HFTB, and its

TNLA and TSLA values increase with the fre-

quency of failures. Analytical estimation of these
values is not possible at present, since it requires

knowledge of the number of trees that become

disconnected following a link failure. Instead, we

use simulation results to compare flooding and

HFTB-RT. Again we use the ANSNET topologies

and we let q ¼ 3 and k ¼ 5. The simulations are
ran for three hours with various numbers of link

failures happening at different times within the
three hours. The TNLA and TSLA values aver-

aged over a 30 min interval are shown in Fig. 12

Fig. 11. Integrating HFTB-RT into the OSPF protocol.

286 T. Korkmaz et al. / Computer Networks 46 (2004) 273–293
for the 54-link topology (similar trends were also

observed for the 91-link topology).

As the number of link failures increases, the

TNLA and TSLA of flooding decrease while those
of HFTB-RT increase gradually. The reason for

this is that, since the number of active links in the

network decrease due to link failures, the flooding

sends LSAs through less number of links and thus

Fig. 12. Overhead of HFTB and flooding versus the number of link failures (simulations).

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293 287
reduce the TNLA and TSLA. In HFTB-RT,

however, since some LSAs in tree-based broad-
casting mode are switched to flooding mode in

case of link failures and flooded throughout the

network, the TNLA and TSLA of HFTB-RT in-

crease gradually with the increase of link failures.

However, HFTB-RT is still giving better perfor-

mance than the flooding under moderate number

of link failures. Note that as the number of link

failures increases, the network becomes more
sparse (i.e., looks like a tree). In this case, flooding

may perform better than HFTB-RT. In practice,

however, core networks do not experience frequent

link failures that lead to sparse topologies.

Therefore, HFTB-RT is a viable solution for dis-

seminating QoS-related state information accu-

rately and efficiently in practice.
5. Extending HFTB(-RT) to OSPF-based hierar-

chical networks

For scalability reasons, OSPF supports two-

level hierarchical routing, in which the network is

divided into areas. In each area, the area border

routers capture the routing information within that
area, summarize this information into summary-

LSAs, and then flood these LSAs throughout the

other areas and their border routers. So far, we

have explained the operation of HFTB and
HFTB-RT within an area. We now explain how to

use/extend the proposed hybrid approach to hier-
archical OSPF networks. First, note that it is

possible to use HFTB(-RT) within areas while still

using flooding between areas. This may be par-

ticularly appropriate when the number of areas is

small or when the inter-area connectivity is sparse.

Basically, since OSPF also uses flooding be-

tween areas (but involving different types of

LSAs), a similar approach to the one used within
an area can be used here. We need to compute and

maintain broadcast trees for the upper layer of the

hierarchy, and to make the HFTB-related modi-

fications (FT-bit in the router LSAs) to the other

types of LSAs (e.g., summary LSAs) that are ex-

changed between areas. The rest is similar to what

was described before. In other words, an area

border router will flood the first summary LSA
within the 30 min interval so that each node can

establish the broadcast trees for upper layer areas.

After the flooding of the first summary LSA, all

the nodes within the network would use the

broadcast trees to disseminate the subsequent

summary LSAs throughout the network. Note

that the broadcast trees established in for upper

layer would be consistent with the ones created
within the area because intra-area routing has

precedence over inter-area routing. We are cur-

rently in the process of making these modifications

to the source code of the OSPF.

288 T. Korkmaz et al. / Computer Networks 46 (2004) 273–293
6. Conclusions and future work

We provided a hybrid state dissemination

mechanism that combines flooding and tree-based

broadcasting (HFTB) to achieve simple yet reliable
and efficient link-state dissemination. Such a

mechanism is particularly needed in the context of

QoS routing, which involves frequent dissemina-

tion of several dynamic parameters. In contrast to

previous tree-based broadcasting approaches,

which require complex algorithms and protocols to

determine and maintain the broadcast trees, the

proposed HFTB simply determines the broadcast
trees by flooding first-time LSAs. Subsequent LSAs

that update the QoS-related state of an existing

link(s) are then disseminated over the broadcast

trees. To deal with link-failures, we provided a

modified version of HFTB, called HFTB-RT that

can repair disconnected trees. We described how to

integrate the proposed hybrid mechanisms into

OSPF. For this purpose, two of the currently un-
used bits of the Options field in the LSA header are

defined as FT-bit and RT-bit. Using these bits, we

slightly modified the flooding procedure of OSPF

to determine the broadcast trees and to disseminate

LSAs over these trees. Accordingly, we imple-

mented HFTB and HFTB-RT by modifying the

existing source code of OSPF. We compared the

proposed mechanisms with the flooding using
numerical and simulation results. If there are no

link failures, HFTB-RT has the same performance

of HFTB. Otherwise, it incurs some extra overhead

over HFTB. However, by using HFTB-RT, nodes

dynamically repair disconnected broadcast trees in

the case of link failures and acquire the most recent

LSAs in a simple and efficient manner. In spite of

this overhead, the HFTB-RT provides significantly
better performance than currently used flood-

ing while maintaining the simplicity and reliabil-

ity of flooding under reasonable number of link

failures. Moreover, in simulation we observed that,

the flooding procedure of OSPF sends the same

LSAs over some links on both directions and

counts them as implicit ACKs. Since this results in

having more LSAs than ACKs in the network, the
TSLA of the flooding excessively increases in

practice. However, the proposed tree-based hybrid

approach avoids implicit ACKs and thus provides
much better TSLA performance than the flooding

in practice.

As a future work, we plan to implement the

proposed hybrid mechanism under the hierarchical

structure of OSPF while investigating how to

further simplify it and deploy in an incremental
manner. We also study the stability and perfor-

mance of QoS-based path selection algorithms

under QoS-enhanced OSPF using the proposed

mechanism. Finally, we plan to investigate better

analytical models that can give good accuracy

when compared with simulations.
Appendix A. OSPF-based implementation of

HFTB(-RT)

Both HFTB and HFTB-RT have been imple-

mented by modifying the OSPF source code pro-

vided in [20]. We now explain the main features of

our implementation. A detailed description of this

implementation along with the source code can be
found at www.cs.utsa.edu/~korkmaz/research/

hftb. Implementation wise, HFTB can be regarded

as a special case of HFTB-RT, so we only describe

the implementation of HFTB-RF.

As indicated before, integrating HFTB-RT into

OSPF requires making three main modifications to

OSPF: (1) redefining two of the unused bits of the

Options field of the LSA header, (2) creating and
maintaining a parent–children table at every node,

and (3) adding and changing some steps in the

OSPF algorithm at a node.
A.1. Redefining unused bits

The header of an OSPF LSA has several unused

bits in the Options field. We designated the two

most significant bits of this field as FT-bit and RT-

bit, respectively. To access/check/set these bits

later, we defined the following masks in hexadec-

imal format:

SPO_FT¼0x80

SPO_RT¼0x40

These masks are included in spfpkt.h, where

all other bits are defined.

http://www.cs.utsa.edu/~korkmaz/research/hftb
http://www.cs.utsa.edu/~korkmaz/research/hftb

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293 289
A.2. Creating and maintaining a parent–children

table

In Fig. 3, we described the parent–children

table as a two-dimensional array. In practice,
the number of nodes and the number of

neighbors are not known in advance, so we

need a dynamic data structure to maintain the

parent–children relationships as they become

realized. To provide a proof-of-concept, we

simply used a linked list implementation. How-

ever, one can use binary trees or hash tables to

improve the efficiency in accessing the entries of
the parent–children table.

As shown in Fig. 3, each entry of the parent–

children table consists of three components: origin,

parent, and a list of children. To maintain such

entries using a linked list, we first defined the fol-

lowing classes in a new file called pctable.h.

class PCTable{

public:

rtid_t origin;

SpfNbr *parent;

Children *childlist;

PCTable *next;

/* some flags that are used in

HFTB-RT */

int need_flood;
seq_t repair_seqno;

int repaired;

PCTable(); /* Constructor to

initialize the parent–children

table */

};

class Children{

public:

SpfNbr *child;

Children *next;

Children(){/* Constructor to

initialize the children linked

list */

child¼0;

next¼0;

}

friend class PCTable;

};
As shown above, the PCTable class also con-

tains few other flags for each entry, which are used

to repair trees in HFTB-RT. To incorporate the

parent–children table into OSPF, we included the

following into the original OSPF class whose

declaration is given in ospf.h: (a) a pointer to the
parent–children table, and (b) new functions to

update or access the entries of the parent–children

table:

class OSPF{

. . .
PCTable *pctable_head;

. . .
void add_parent_pctable(rtid_t

orig, SpfNbr *par);

/* Origin and parent nodes are

given.If origin does not ex-

ist, it is created and parent

is added.Otherwise, the

given parent is added to the

existing origin.*/

void add_child_pctable(rtid_t

orig, SpfNbr *ch);

/* Origin and the child node are

given.If the child is not

already present, it is added to

the children list of the

origin.Otherwise, it is not

added.*/

void delete_child_pctable(rtid_t

orig, SpfNbr *ch);

/* Origin and the child node are

given.If the child is not

present, it is not deleted.

Otherwise, it is deleted

from the children list of the

origin.*/

bool is_child_pctable(rtid_t

orig, SpfNbr *ch);

/* Origin and child node are

given.Returns true if the

given child node is present in

the origin’s children list.

Otherwise, returns false.*/

290 T. Korkmaz et al. / Computer Networks 46 (2004) 273–293
SpfNbr *get_parent_pctable(rtid_t

orig);

/* Given the origin, the parent

node corresponding to it

is returned.*/

/* The following four functions

are used in HFTB-RT to set or

check the values of the flags

need_flood and repaired that are

needed to deal with link failures

and disconnected trees */

void set_flood_pctable(SpfNbr *ch);
bool need_flood_pctable(rtid_t

orig);

void set_tree_repair_pctable

(rtid_t orig, seq_t seqno);

bool need_tree_repair_pctable

(rtid_t orig, seq_t seqno);

In the standard OSPF implementation, the
above functions are given in ospf.C. In our

implementation, we put them in the newly created

file pctable.C.

A.3. Modifying OSPF procedures

The required modifications to OSPF procedures
were outlined in Fig. 11. We now describe how

such modifications were implemented. For ease of

exposition, we follow the same presentation order

of Fig. 11.

A.3.1. Upon becoming operational

The constructor of the OSPF class which is in

ospf.C is called. We included the followings into
that constructor: (a) the parent–children table is

initialized as an empty list (i.e., pctable_head

¼0); (b) a flag named hftb defined in ospf.h is

set to 0, indicating that the node is initially in

flooding mode.

A.3.2. Repeat every 30 min

The refresh_lsas() function of OSPF

class which is in ospf.C is called. This function

periodically generates a new LSA describing the

state of its outgoing links. In this function, before
generating a new LSA, we reset the hftb flag (i.e.,

set it to 0), making the node go into the flooding

mode every 30 min.

In addition to the periodic generation of LSAs,

our implementation allows for LSAs to be gener-

ated upon a trigger. This feature was implemented
in the new function hftb_lsas() in dbage.C

by modifying refresh_lsas() to generate

trigger-based LSAs.

A.3.3. Upon the failure of a link

The destructor of SpfIfc class which is in

spfifc.C is called. We added new statements

into that destructor to set the need_flood flag
in the parent–children table for every originator

whose tree is disconnected as a result of that

link failure. This flag is later used in the

flood() function to repair trees by setting the

RT-bit of a received LSA to 1 and flooding that

LSA.

A.3.4. Upon generating a new LSA

The lsa_reorig() function in spforig.C

is called. If the node is in the flooding mode (i.e.,

hftb¼0), then the FT-bit is set to 0 for that LSA

while it is being built in the function rl_orig()

(which is in the file rtrlsa.C). After flooding the

LSA to all the neighbors in the flood() func-

tion, we set the hftb flag is to 1, indicating that

the node is switching into the tree-based broad-
casting mode for the subsequent LSAs. If the node

is already in the tree-based broadcasting mode

(i.e., hftb¼1), then the FT-bit of the generated

LSA is set to 1, again while it is being built in

rl_orig(). The LSA is then sent to all the nodes

in the children list using the flood() function.

To avoid sending the LSA to non-children nodes,

we simply added few if-statements in the
flood() function in spflood.C.

A.3.5. Upon receiving via node j an LSA that

originated from node u
The recv_update() function in spflood.C

is called. If the received LSA is the most recent

one, this function updates the link-state database

and calls the flood() function, in which the
following changes are made. Check the options

field of the LSA. Then

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293 291
1. if FT¼ 0 and RT¼ 0,
Node j is added as a parent to the originator u
in the parent–children table using add_par-

ent_pctable(). The LSA is flooded to all

neighbors except node j. An acknowledgement
is sent to node j, setting the FT-bit to 1.

2. if FT¼ 0 and RT¼ 1,
The received LSA is compared against the

database copy using the function

cmp_opts(). This function is added to the file

spflood.C.

/* In flooding mode, if the receiv-

ing node is chosen to be the parent

send an ACK to it with FT-bit set

to 1*/

int LSA::cmp_opts(LShdr *hdr){

LShdr *dbcopy;

/* Create network-ready version

of database copy */

dbcopy¼ospf->BuildLSA(this);
if ((dbcopy->ls_seqno¼ ¼hdr->

ls_seqno) && (dbcopy->ls_opts

& 128)¼ ¼128){

return 0;

}

else{ /* LSA most recent; add to

DB */

return 1;

}

}

If the node has a database copy with FT¼ 1
and RT¼ 0, then an acknowledgement is sent
to node j with the FT-bit set to 0. The LSA is
sent to all the neighbors except node j.
Otherwise, node j is added as a parent to the
originator u in the parent–children table using
add_parent_pctable(). An acknowledge-

ment is sent to node j with the FT-bit set to 1.
The LSA is sent to all the neighbors except node

j.
3. if FT¼ 1,
If the flag need_flood corresponding to

originator u indicates that the broadcast tree is
disconnected (i.e., need_flood is set to 1),

then the LSA’s FT-bit is set to 0 and the RT-bit

is set to 1. The flag need_flood in the parent–
children table is set to 0 to indicate that the

disconnected tree has been repaired. The LSA is

sent to all neighbors including node j. An
acknowledgement is sent to node j with FT-bit
equals to 1.

Otherwise, the LSA is sent to all the nodes in
the children list. An acknowledgement is sent to

node j with the FT-bit equals to 1.

A.3.6. Upon receiving an acknowledgement from

node j
The recv_ack() function in spfack.C is

called. In this function, we made the following

changes:

(a) if the FT-bit in the received LSA’s options field

is 1, then add node j to the children list of the
received LSA’s originator using the function

add_child_pctable();

(b) if the FT-bit in the received LSA’s Options

field is 0, then delete node j from the children
list of the received LSA’s originator. Deleting
the child is done by using the function

delete_child_pctable().
References

[1] G. Apostolopoulos, R. Guerin, S. Kamat, S.K. Tripathi,

Quality of service based routing: A performance perspec-

tive, in: Proceedings of the ACM SIGCOMM ’98

Conference, Vancouver, British Columbia, Canada,

August–September 1998, pp. 17–28.

[2] G. Apostolopoulos, D. Williams, S. Kamat, A. Guerin, R.

Orda, T. Przygienda, QoS routing mechanisms and OSPF

extensions. RFC 2676, IETF, August 1999.

[3] E. Basturk, P. Stirpe, A hybrid spanning tree algorithm

for efficient topology distribution in PNNI, in: Proceedings

of the 1st IEEE International Conference on ATM

(ICATM ’98), 1998, pp. 385–394.

[4] B. Bellur, R.G. Ogier, A reliable, efficient topology

broadcast protocol for dynamic networks, in: Proceedings

of the INFOCOM ’99 Conference, vol. 1, IEEE, New

York, 1999, pp. 178–186.

[5] K. Carlberg, J. Crowcroft, Building shared trees using a

one-to-many joining mechanism, ACM Computer Com-

munication Review 27 (1) (1997) 5–11.

[6] R. Castaneda, S.R. Das, Query localization techniques for

on-demand routing protocols in ad hoc networks, in:

Proceedings of the Fifth International Conference on

Mobile Computing and Networking (MobiCom’99),

August 1999, pp. 186–194.

292 T. Korkmaz et al. / Computer Networks 46 (2004) 273–293
[7] C.-C. Chiang, H.-K. Wu, W. Liu, M. Gerla, Routing in

clustered multihop mobile wireless networks with fading

channel, in: The IEEE Singapore International Conference

on Networks (SICON), April 1997, pp. 197–211.

[8] R. Coltun, The OSPF opaque LSA option, Technical

Report RFC 2370, IETF, July 1998.

[9] D.E. Comer, Internetworking with TCP/IP, vol. 1, third

ed., Prentice-Hall, Englewood Cliffs, NJ, 1995.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to

Algorithms, sixteenth ed., The MIT Press and McGraw-

Hill, Cambridge, MA, 1996.

[11] Y.K. Dalal, R.M. Metcalfe, Reverse path forwarding of

broadcast packets, Communications of the ACM 21 (1978)

1040–1048.

[12] C. Diot, W. Dabbous, J. Crowcroft, Multipoint commu-

nication: a survey of protocols, functions, and mechanisms,

IEEE Journal on Selected Areas in Communications 15 (3)

(1997) 277–290.

[13] Z.J. Haas, M.R. Pearlman, The zone routing protocol

(ZRP) for ad-hoc networks, Technical report, Internet-

draft, IETF MANET Working Group, July 2002.

[14] P.A. Humblet, S.R. Soloway, Topology broadcast algo-

rithms, Computer Networks and ISDN Systems 16 (1989)

179–186.

[15] D.B. Johnson, D.A. Maltz, Y.-C. Hu, The dynamic source

routing protocol for mobile ad hoc networks, Technical

report, Internet-draft, IETF MANET Working Group,

February 2003.

[16] Y.-B. Ko, N.H. Vaidya, Location-aided routing (LAR) in

mobile ad hoc networks, in: Proceedings of the ACM/IEEE

MobiCom ’99 Conference, November 1998, pp. 66–75.

[17] V.O.K. Li, Z. Zhang, Internet multicast routing and

transport control protocols, Proceedings of the IEEE 90

(3) (2002) 360–391.

[18] J. Moy, OSPF version 2. Standards Track RFC 2328,

IETF, April 1998.

[19] J.T. Moy, OSPF: Anotomy of an Internet Routing

Protocol, Addison Wesley, Reading, MA, 1998.

[20] J.T. Moy, OSPF: Complete Implementation (with CD-

ROM), Addison Wesley, Reading, MA, 2000.

[21] S. Murthy, J.J. Garcia-Luna-Aceves, An efficient routing

protocol for wireless networks, Mobile Networks and

Applications 1 (2) (1996) 183–197.

[22] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, J.-P. Sheu, The

broadcast storm problem in a mobile ad hoc network, in:

Proceedings of the Fifth International Conference on

Mobile Computing and Networking (MobiCom’99), Au-

gust 1999, pp. 151–162.

[23] V. Park, S. Corson, Temporally-ordered routing algorithm

(tora) version 1 functional specification, Technical Report,

Internet-draft, IETF MANET Working Group, February

2003.

[24] C.E. Perkins, E. Belding-Royer, S. Das, Ad hoc on-

demand distance vector routing, Technical Report, Net-

work Working Group, RFC 3561, July 2003.

[25] C.E. Perkins, P. Bhagwat, Highly dynamic destination-

sequenced distance-vector routing (dsdv) for mobile com-
puters, ACM SIGCOMM Computer Communication

Review 24 (4) (1994) 234–244.

[26] L.H. Sahasrabuddhe, B. Mukherjee, Multicast routing

algorithms and protocols: a tutorial, IEEE Network 14 (1)

(2000) 90–102.

Turgay Korkmaz received the B.Sc.
degree with the first ranking from
Computer Science and Engineering at
Hacettepe University, Ankara, Tur-
key, in 1994, and two M.Sc. degrees
from Computer Engineering at Bil-
kent University, Ankara, and Com-
puter and Information Science at
Syracuse University, Syracuse, NY, in
1996 and 1997, respectively. He re-
ceived his Ph.D. degree from Electri-
cal and Computer Engineering at
University of Arizona, Tucson, AZ, in
December 2001. In January 2002, he
joined the University of Texas at San Antonio, where he is
currently an Assistant Professor of Computer Science
department. His research interests include QoS-based routing,
multiple constrained path selection, efficient dissemination of
network-state information, topology aggregation in hierarchi-
cal networks, and performance evaluation of QoS-based
routing protocols. He is a Co-PI on the NSF High Perfor-
mance Network Connections (HPNC) Award to provide In-
ternet 2 Connectivity for UTHSCSA and UTSA. He was the
co-chair for the ACM Symposium on Applied Computing
(SAC 2003), Special Track on Parallel and Distributed Sys-
tems and Networking and the SAC 2004 Special Track on
Computer networks. He also served on the technical program
committee of IEEE INFOCOM 2004.
Marwan Krunz is an associate profes-
sor of Electrical and Computer Engi-
neering at the University of Arizona.
His research interests lie in the field of
computer networks, especially in its
performance and traffic control as-
pects. His recent work has focused on
the provisioning of quality of service
(QoS) over wireless links, QoS routing,
traffic modeling, bandwidth allocation,
video-on-demand systems, and power-
aware protocols for ad hoc networks.
He has published more than 70 journal
articles and refereed conference papers
in these areas. He is a recipient of the National Science Foun-
dation CAREER Award (1998–2002). He currently serves on
the editorial board for the IEEE/ACM Transactions on Net-
working and the Computer Communications Journal. He was a
Guest Co-editor for a Feature Topic on QoS Routing (IEEE
Communications, June 2001) and a Special Issue on Hot
Interconnects (IEEE Micro, January 2002). He is the Technical
Program Co-chair for the IEEE INFOCOM 2004 Conference
(Hong Kong, March 7–11, 2004), and previously served as the
Technical Program Co-chair for the 9th Hot Interconnects
Symposium (Stanford University, August 2001). He has served
and continues to serve on the executive and technical pro-
gram committees of many international conferences. He serves
as a reviewer and a panelist for NSF proposals, and is a con-
sultant for several corporations in the telecommunications
industry.

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293 293
Jyothi Guntaka received Bachelor of
Technology degree with a distinction
in Computer Science and Engineering
from Andhra University, Visakhapat-
nam, India. She received her M.S. in
Computer Science from The Univer-
sity of Texas at San Antonio, San
Antonio, Texas. Her research interests
include Quality of Service, Congestion
Control and Security in computer
networks.

	OSPF-based hybrid approach for scalable dissemination of QoS parameters
	Introduction
	Background and related work
	Flooding
	Tree-based broadcasting

	Hybrid dissemination mechanism
	HFTB and its correctness
	Integrating HFTB into OSPF
	Performance comparisons
	Analytical results
	Simulation results

	Enhanced hybrid mechanism
	Extending HFTB(-RT) to OSPF-based hierarchical networks
	Conclusions and future work
	OSPF-based implementation of HFTB(-RT)
	Redefining unused bits
	Creating and maintaining a parent-children table
	Modifying OSPF procedures
	References

